Identification

Title

Agreement in late twentieth century Southern Hemisphere stratospheric temperature trends in observations and CCMVal-2, CMIP3, and CMIP5 models

Abstract

[1] We present a comparison of temperature trends using different satellite and radiosonde observations and climate (GCM) and chemistry-climate model (CCM) outputs, focusing on the role of photochemical ozone depletion in the Antarctic lower stratosphere during the second half of the twentieth century. Ozone-induced stratospheric cooling peaks during November at an altitude of approximately 100 hPa in radiosonde observations, with 1969 to 1998 trends in the range of -3.8 to -4.7 K/dec. This stratospheric cooling trend is more than 50% greater than the previously estimated value of -2.4 K/dec, which suggested that the CCMs were overestimating the stratospheric cooling, and that the less complex GCMs forced by prescribed ozone were matching observations better. Corresponding ensemble mean model trends are 3.8 K/dec for the CCMs, -3.5 K/dec for the CMIP5 GCMs, and -2.7 K/dec for the CMIP3 GCMs. Accounting for various sources of uncertainty--including sampling uncertainty, measurement error, model spread, and trend confidence intervals--observations and CCM and GCM ensembles are consistent in this new analysis. This consistency does not apply to each individual that makes up the GCM and CCM ensembles, and some do not show significant ozone-induced cooling. Nonetheless, analysis of the joint ozone and temperature trends in the CCMs suggests that the modeled cooling/ozone-depletion relationship is within the range of observations. Overall, this study emphasizes the need to use a wide range of observations for model validation as well as sufficient accounting of uncertainty in both models and measurements.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7jq11sf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:51:02.481252

Metadata language

eng; USA