Identification

Title

Enhancing accuracy of air quality and temperature forecasts during paddy crop residue burning season in Delhi via chemical data assimilation

Abstract

This paper examines the accuracy of Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) generated 72 hr fine particulate matter (PM2.5) forecasts in Delhi during the crop residue burning season of October-November 2017 with respect to assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals, persistent fire emission assumption, and aerosol-radiation interactions. The assimilation significantly pushes the model AOD and PM2.5 toward the observations with the largest changes below 5 km altitude in the fire source regions (northeastern Pakistan, Punjab, and Haryana) as well as the receptor New Delhi. WRF-Chem forecast with MODIS AOD assimilation, aerosol-radiation feedback turned on, and real-time fire emissions reduce the mean bias by 88-195 mu g/m(3) (70-86%) with the largest improvement during the peak air pollution episode of 6-13 November 2017. Aerosol-radiation feedback contributes similar to 21%, similar to 25%, and similar to 24% to reduction in mean bias of the first, second, and third days of PM2.5 forecast. Persistence fire emission assumption is found to work really well, as the accuracy of PM2.5 forecasts driven by persistent fire emissions was only 6% lower compared to those driven by real fire emissions. Aerosol-radiation feedback extends the benefits of assimilating satellite AOD beyond PM2.5 forecasts to surface temperature forecast with a reduction in the mean bias of 0.9-1.5 degrees C (17-30%). These results demonstrate that air quality forecasting can benefit substantially from satellite AOD observations particularly in developing countries that lack resources to rapidly build dense air quality monitoring networks.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7348ppq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-09-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:30:39.852023

Metadata language

eng; USA