Identification

Title

A deep-learning approach to soil moisture estimation with GNSS-R

Abstract

GNSS reflection measurements in the form of delay-Doppler maps (DDM) can be used to complement soil measurements from the SMAP Mission, which has a revisit rate too slow for some hydrological/meteorological studies. The standard approach, which only considers the peak value of the DDM, is subject to a significant amount of uncertainty due to the fact that the peak value of the DDM is not only affected by soil moisture, but also complex topography, inundation, and overlying vegetation. We hypothesize that information from the entire 2D DDM could help decrease uncertainty under various conditions. The application of deep-learning-based techniques has the potential to extract additional information from the entire DDM, while simultaneously allowing for the incorporation of additional contextual information from external datasets. This work explored the data-driven approach of convolutional neural networks (CNNs) to determine complex relationships between the reflection measurement and surface parameters, providing the groundwork for a mechanism to achieve improved global soil moisture estimates. A CNN was trained on CYGNSS DDMs and contextual ancillary datasets as inputs, with aligned SMAP soil moisture values as the targets. Data were aggregated into training sets, and a CNN was developed to process them. Predictions from the CNN were studied using an unbiased subset of samples, showing strong correlation with the SMAP target values. With this network, a soil moisture product was generated using DDMs from 2017-2019 which is generally comparable to existing global soil moisture products, and shows potential advantages in spatial resolution and coverage over regions where SMAP does not perform well. Comparisons with in-situ measurements demonstrate the correlation between the network predictions and ground truth with high temporal resolution.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x06bs7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-07-08T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:37:27.479298

Metadata language

eng; USA