Identification

Title

Assimilating aerosol observations with a "hybrid" variational-ensemble data assimilation system

Abstract

Total 550 nm aerosol optical depth, surface fine particulate matter (PM2.5), and meteorological observations were assimilated with continuously cycling three-dimensional variational (3DVAR), ensemble square root Kalman filter (EnSRF), and hybrid variational-ensemble data assimilation systems. The hybrid system's background error covariances (BECs) were a blend of those in 3DVAR and produced by the cycling EnSRF system, and the 3DVAR, EnSRF, and hybrid systems differed almost exclusively by their BECs. New analyses were produced every 6 h between 0000 UTC 1 June and 1800 UTC 14 July 2010 over a domain encompassing the contiguous United States (CONUS) and adjacent areas. Additionally, a control experiment that only assimilated meteorological observations was performed. Each 1800 UTC analysis initialized a 48 h Weather Research and Forecasting with Chemistry model forecast. These forecasts were evaluated with a focus on air quality prediction. The ensemble aerosol spread was generally insufficient, particularly over the western CONUS. However, despite the suboptimal ensemble spread, the hybrid system performed quite well and usually produced the best aerosol forecasts. Additionally, both the 3DVAR- and EnSRF-initialized forecasts typically outperformed the control. These results are encouraging and suggest the resiliency of the hybrid method. Improved aerosol ensembles should translate into even better future hybrid forecasts.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7s183fq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-04-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:07:37.987527

Metadata language

eng; USA