Identification

Title

Characterizing the uncertainty and assessing the value of gap-filled daily rainfall data in Hawaii

Abstract

Almost all daily rainfall time series contain gaps in the instrumental record. Various methods can be used to fill in missing data using observations at neighboring sites (predictor stations). In this study, five computationally simple gap-filling approaches-normal ratio (NR), linear regression (LR), inverse distance weighting (ID), quantile mapping (QM), and single best estimator (BE)-are evaluated to 1) determine the optimal method for gap filling daily rainfall in Hawaii, 2) quantify the error associated with filling gaps of various size, and 3) determine the value of gap filling prior to spatial interpolation. Results show that the correlation between a target station and a predictor station is more important than proximity of the stations in determining the quality of a rainfall prediction. In addition, the inclusion of rain/no-rain correction on the basis of either correlation between stations or proximity between stations significantly reduces the amount of spurious rainfall added to a filled dataset. For large gaps, relative median errors ranged from 12.5% to 16.5% and no statistical differences were identified between methods. For submonthly gaps, the NR method consistently produced the lowest mean error for 1- (2.1%), 15- (16.6%), and 30-day (27.4%) gaps when the difference between filled and observed monthly totals was considered. Results indicate that gap filling prior to spatial interpolation improves the overall quality of the gridded estimates, because higher correlations and lower performance errors were found when 20% of the daily dataset is filled as opposed to leaving these data unfilled prior to spatial interpolation.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7v69nww

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:15.823699

Metadata language

eng; USA