WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction
WRF-Solar is a specific configuration and augmentation of the Weather Research and Forecasting (WRF) Model designed for solar energy applications. Recent upgrades to the WRF Model contribute to making the model appropriate for solar power forecasting and comprise 1) developments to diagnose internally relevant atmospheric parameters required by the solar industry, 2) improved representation of aerosol-radiation feedback, 3) incorporation of cloud-aerosol interactions, and 4) improved cloud-radiation feedback. The WRF-Solar developments are presented together with a comprehensive characterization of the model performance for forecasting during clear skies. Performance is evaluated with numerical experiments using a range of different external and internal treatment of the atmospheric aerosols, including both a model-derived climatology of aerosol optical depth and temporally evolving aerosol optical properties from reanalysis products. The necessity of incorporating the influence of atmospheric aerosols to obtain accurate estimations of the surface shortwave irradiance components in clear-sky conditions is evident. Improvements of up to 58%, 76%, and 83% are found in global horizontal irradiance, direct normal irradiance, and diffuse irradiance, respectively, compared to a standard version of the WRF Model. Results demonstrate that the WRF-Solar model is an improved numerical tool for research and applications in support of solar energy.
document
http://n2t.net/ark:/85065/d7js9s39
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-07-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:00:38.813079