Identification

Title

Thermospheric density perturbations produced by Traveling Atmospheric Disturbances during August 2005 storm

Abstract

Thermospheric mass density perturbations are commonly observed during geomagnetic storms and fundamental to upper atmosphere dynamics, but the sources of these perturbations are not well understood. Large neutral density perturbations during storms greatly affect the drag experienced by low Earth orbit. We investigated the thermospheric density perturbations at all latitudes observed along the CHAMP and GRACE satellite trajectories during the August 24-25, 2005 geomagnetic storm. Observations show that large neutral density enhancements occurred not only at high latitudes, but also globally. Large density perturbations were seen in the equatorial regions away from the high-latitude, magnetospheric energy sources. We used the high-resolution Multiscale Atmosphere Geospace Environment (MAGE) model to simulate consecutive neutral density changes observed by satellites during the storm. The MAGE simulation, which resolved mesoscale high-latitude convection electric fields and field-aligned currents, and included physics-based specification of auroral precipitation, was contrasted with a standalone ionosphere-thermosphere simulation driven by a high-latitude electrodynamics empirical model. The comparison demonstrates that first-principles representations of highly dynamic and localized Joule heating events in a fully coupled whole geospace model is critical to accurately capture both generation and propagation of traveling atmospheric disturbances (TADs) that produce neutral density perturbations globally. The MAGE simulation shows that larger density peaks in the equatorial region observed by CHAMP and GRACE are the result of TADs generated at high-latitudes in both hemispheres, and intersect at low-latitudes. This study reveals the importance of investigating thermospheric density variations at all latitudes in a fully coupled geospace model with sufficiently high resolving power.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7z89h23

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:18:06.276772

Metadata language

eng; USA