Identification

Title

A multimodal data fusion and deep learning framework for large-scale wildfire surface fuel mapping

Abstract

Accurate estimation of fuels is essential for wildland fire simulations as well as decision-making related to land management. Numerous research efforts have leveraged remote sensing and machine learning for classifying land cover and mapping forest vegetation species. In most cases that focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred square kilometers; thus, many small-scale site-specific models had to be created to cover the landscape at the national scale. The present work aims to develop a large-scale surface fuel identification model using a custom deep learning framework that can ingest multimodal data. Specifically, we use deep learning to extract information from multispectral signatures, high-resolution imagery, and biophysical climate and terrain data in a way that facilitates their end-to-end training on labeled data. A multi-layer neural network is used with spectral and biophysical data, and a convolutional neural network backbone is used to extract the visual features from high-resolution imagery. A Monte Carlo dropout mechanism was also devised to create a stochastic ensemble of models that can capture classification uncertainties while boosting the prediction performance. To train the system as a proof-of-concept, fuel pseudo-labels were created by a random geospatial sampling of existing fuel maps across California. Application results on independent test sets showed promising fuel identification performance with an overall accuracy ranging from 55% to 75%, depending on the level of granularity of the included fuel types. As expected, including the rare-and possibly less consequential-fuel types reduced the accuracy. On the other hand, the addition of high-resolution imagery improved classification performance at all levels.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71j9fq5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:42:46.614973

Metadata language

eng; USA