Identification

Title

A new method for interpreting nonstationary running correlations and its application to the ENSO-EAWM relationship

Abstract

We here propose a new statistical method to interpret nonstationary running correlations by decomposing them into a stationary part and a first-order Taylor expansion approximation for the nonstationary part. Then, this method is applied to investigate the nonstationary behavior of the El Nino-Southern Oscillation (ENSO)-East Asian winter monsoon (EAWM) relationship, which exhibits prominent multidecadal variations. It is demonstrated that the first-order approximation of the nonstationary part can be expressed to a large extent by the impact of the nonlinear interaction between the Atlantic Multidecadal Oscillation (AMO) and ENSO (AMO*Nino3.4) on the EAWM. Therefore, the nonstationarity in the ENSO-EAWM relationship comes predominantly from the impact of an AMO modulation on the ENSO-EAWM teleconnection via this key nonlinear interaction. This general method can be applied to investigate nonstationary relationships that are often observed between various different climate phenomena.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qn69dk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-01-08T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:16:26.751675

Metadata language

eng; USA