Identification

Title

Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED)

Abstract

We present periodic variations of the migrating diurnal tide from Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) temperature and wind data from 2002 to 2007 and meteor radar data at Maui (20.75°N, 156.43°W). There are strong quasi-biennial oscillation (QBO) signatures in the amplitude of the diurnal tidal temperature in the tropical region and in the wind near ±20°. The magnitude of the QBO in the diurnal tidal amplitude reaches about 3 K in temperature and about 7 m/s (Northern Hemisphere) and 9 m/s (Southern Hemisphere) in meridional wind. The period of the diurnal tide QBO is around 24 - 25 months in the mesosphere but is quite variable with altitude in the stratosphere. Throughout the mesosphere, the amplitude of the diurnal tide reaches maximum during March/April of years when the QBO in lower stratospheric wind is in the eastward phase. Because the tide shows amplification only during a limited time of the year, there are not enough data yet to determine whether the tidal variation is truly biennial (24-month period) or is quasi-biennial. The semiannual (SAO) and annual oscillations (AO) in the diurnal tide support previous findings: tidal amplitude is largest around equinoxes (SAO signal) and is larger during the vernal equinox (AO signal). TIMED Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) temperature and atmospheric pressure data are used to calculate the balance wind and the tides in horizontal wind. The comparison between the calculations and the wind observed by TIMED Doppler Interferometer (TIDI) and meteor radar indicates qualitative agreement, but there are some differences as well.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dn4629

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2009-07-14T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2009 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:43:50.797078

Metadata language

eng; USA