Interaction of jets and submesoscale dynamics leads to rapid ocean ventilation
Ocean ventilation is the process by which climatically important tracers such as heat and carbon are exchanged between the atmosphere and ocean interior. In this paper a series of numerical simulations are used to study the interaction of submesoscales and a topographically steered jet in driving rapid ventilation. The ventilation is found to increase both as a function of wind stress and model resolution, with a submesoscale-resolving 1/1208 model exhibiting the largest ventilation rate. The jet in this simulation is found to be persistently unstable to submesoscale instabilities, which are known to feature intense vertical circulations. The vertical tracer transport is found to scale as a function of the eddy kinetic energy and mean isopycnal slope, whose behaviors change as a function of the wind stress and due to the emergence of a strong potential vorticity gradient due to the lateral shear of the jet. These results highlight the importance of jet-submesoscale interaction as a bridge between the atmosphere and the ocean interior.
document
http://n2t.net/ark:/85065/d7m90d0s
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-10-01T00:00:00Z
Copyright 2020 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:32:49.226492