Identification

Title

Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing

Abstract

Tropical cyclone (TC)-permitting general circulation model simulations are performed with spherical geometry and uniform thermal forcing, including uniform sea surface temperature (SST) and insolation. The dependence of the TC number and TC intensity on SST is examined in a series of simulations with varied SST. The results are compared to corresponding simulations with doubly periodic f-plane geometry, rotating radiative convective equilibrium. The turbulent equilibria in simulations with spherical geometry have an inhomogenous distribution of TCs with the density of TCs increasing from low to high latitudes. The preferred region of TC genesis is the subtropics, but genesis shifts poleward and becomes less frequent with increasing SST. Both rotating radiative convective equilibrium and spherical geometry simulations have decreasing TC number and increasing TC intensity as SST is increased.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x92cx1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-03-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:10:04.520095

Metadata language

eng; USA