Identification

Title

Observations of severe local storms and tornadoes with the atmospheric imaging radar

Abstract

Mobile radar platforms designed for observation of severe local storms have consistently pushed the boundaries of spatial and temporal resolution in order to allow for detailed analysis of storm structure and evolution. Digital beamforming, or radar imaging, is a technique that is similar in nature to a photograwphic camera, where data samples from different spaces at the same range are collected simultaneously. This allows for rapid volumetric update rates compared to radars that scan with a single narrow beam. The Atmospheric Imaging Radar (AIR) is a mobile X-band (3.14-cm wavelength) imaging weather radar that transmits a vertical, 20° fan beam and uses a 36-element receive array to form instantaneous range–height indicators (RHIs) with a native beamwidth of 1° × 1°. Rotation in azimuth allows for 20° × 90° volumetric updates in under 6 s, while advanced pulse compression techniques achieve 37.5-m range resolution. The AIR has been operational since 2012 and has collected data on tornadoes and supercells at ranges as close as 6 km, resulting in high spatial and temporal resolution observations of severe local storms. The use of atmospheric imaging is exploited to detail rapidly evolving phenomena that are difficult to observe with traditional scanning weather radars.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ws8w55

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:39.190782

Metadata language

eng; USA