Identification

Title

Precipitation forecasting using Doppler radar data, a cloud model with Adjoint, and the Weather Research and Forecasting Model: Real case studies during SoWMEX in Taiwan

Abstract

The quantitative precipitation forecast (QPF) capability of the Variational Doppler Radar Analysis System (VDRAS) is investigated in the Taiwan area, where the complex topography and surrounding oceans pose great challenges to accurate rainfall prediction. Two real cases observed during intensive operation periods (IOPs) 4 and 8 of the 2008 Southwest Monsoon Experiment (SoWMEX) are selected for this study. Experiments are first carried out to explore the sensitivity of the retrieved fields and model forecasts with respect to different background fields. All results after assimilation of the Doppler radar data indicate that the principal kinematic and thermodynamic features recovered by the VDRAS four-dimensional variational data assimilation (4DVAR) technique are rather reasonable. Starting from a background field generated by blending ground-based in situ measurements (radiosonde and surface mesonet station) and reanalysis data over the oceans, VDRAS is capable of capturing the evolution of the major precipitation systems after 2 h of simulation. The model QPF capability is generally comparable to or better than that obtained using only in situ observations or reanalysis data to prepare the background fields. In a second set of experiments, it is proposed to merge the VDRAS analysis field with the Weather Research and Forecasting Model (WRF), and let the latter continue with the following model integration. The results indicate that through this combination, the performance of the model QPF can be further improved. The accuracy of the predicted 2-h accumulated rainfall turns out to be significantly higher than that generated by using VDRAS or WRF alone. This can be attributed to the assimilation of meso- and convective-scale information, embedded in the radar data, into VDRAS, and to better treatment of the topographic effects by the WRF simulation. The results illustrated in this study demonstrate a feasible extension for the application of VDRAS in other regions with similar geographic conditions and observational limitations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d74q7vq1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:55:12.448845

Metadata language

eng; USA