Identification

Title

Ionospheric response to the initial phase of geomagnetic storms: Common features

Abstract

Ionospheric responses to the initial phases of three geomagnetic storms: 2-5 April 2004, 7-9 November 2004, and 13-16 December 2006, were compared using both ground-based GPS total electron content (TEC) data and coupled magnetosphere ionosphere thermosphere (CMIT) model simulations. The onset times for these storms all occurred at local daytime in the North American sector. This similarity of onset times and other factors resulted in some common features in their ionospheric response. These common features include (1) enhanced TEC (positive response) at low and middle latitudes in the daytime, (2) depleted TEC (negative response) around the geomagnetic equator in the daytime, (3) a north-south asymmetry in the positive response as the northern hemispheric response appeared to be more pronounced, and (4) negative response at high latitudes as the storms progressed. The CMIT model captured most of these features. Analysis of model results showed that storm-time enhancements in the daytime eastward electric field were the primary cause of the observed positive storm effects at low and middle latitudes as well as the negative response around the geomagnetic equator in the daytime. These eastward electric field enhancements were caused by the penetration of high latitude electric fields to low latitudes during southward interplanetary magnetic field (IMF) periods, when IMF z oscillated between southward and northward direction in the initial, shock phase of the storms. Consequently, the ionosphere was lifted up at low and middle latitudes to heights where recombination was weak allowing the plasma to exist for a long period resulting in higher densities. In addition, the CMIT model showed that high-latitude negative storm responses were related to the enhancements of molecular nitrogen seen in TIMED/Global Ultraviolet Imager observations, whereas the negative storm effects around the geomagnetic equator were not associated with thermospheric composition changes; they were the result of plasma transport processes.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ms3v1k

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-07-29T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:58:36.580232

Metadata language

eng; USA