Two-dimensional kernel smoothing: Using the R package smoothie
Applying a kernel smoother to a two-dimensional field can be a laborious and computationally expensive process if carried out in the most obvious fashion (applying a double loop). One might consider the alternative of stacking a location matrix and applying the kernel smoother in a more efficient way (e.g., through the R function aggregate). However, for large grids this may not be practical or even possible. The methods have the advantage of being able to handle missing values and edges (with fewer neighbors) directly, but if these are not pivotal concerns, the convolution theorem along with the fast Fourier transform (FFT) provides a very speedy alternative. The R package smoothie provides functionality for smoothing a two-dimensional field (or image) using the convolution theorem and FFT, and is used extensively in the spatial weather forecast verification package, Spatial Vx.
document
http://n2t.net/ark:/85065/d7862fv1
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
EARTH SCIENCE SERVICES > DATA ANALYSIS AND VISUALIZATION > STATISTICAL APPLICATIONS
revision
2021-09-17
publication
2013-07-01T00:00:00Z
Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:07:02.990777