Identification

Title

A positive-definite, WENO-limited, high-order finite volume solver for 2-D transport on the cubed sphere using an ADER time discretization

Abstract

Modern computer architectures reward added computation if it reduces algorithmic dependence, reduces data movement, increases accuracy/robustness, and improves memory accesses. The driving motive for this study is to develop a numerical algorithm that respects these constraints while improving accuracy and robustness. This study introduces the ADER-DT (Arbitrary DERivatives in time and space-differential transform) time discretization to positive-definite, weighted essentially nonoscillatory (WENO)-limited, finite volume transport on the cubed sphere in lieu of semidiscrete integrators. The cost of the ADER-DT algorithm is significantly improved from previous implementations without affecting accuracy. A new function-based WENO implementation is also detailed for use with the ADER-DT time discretization. While ADER-DT costs about 1.5 times more than a fourth-order, five-stage strong stability preserving Runge-Kutta (SSPRK4) method, it is far more computationally dense (which is advantageous on accelerators such as graphics processing units), and it has a larger effective maximum stable time step. ADER-DT errors converge more quickly with grid refinement than SSPRK4, giving 6.5 times less error in the L-infinity norm than SSPRK4 at the highest refinement level for smooth data. For nonsmooth data, ADER-DT resolves C-0 discontinuities more sharply. For a complex flow field, ADER exhibits less phase error than SSPRK4. Improving both accuracy and robustness as well as better respecting modern computational efficiency requirements, we believe the method presented herein is competitive for efficiently transporting tracers over the sphere for applications targeting modern computing architectures.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ff3w84

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:32.836717

Metadata language

eng; USA