Identification

Title

A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3

Abstract

A stratospheric sudden warming episode was self- consistently generated in the coupled National Center for Atmospheric Research Thermosphere, Ionosphere, Mesosphere, and Electrodynamics General Circulation Model/ Climate Community Model version 3 (TIME- GCM/ CCM3). Taking advantage of the unique vertical range of the coupled model (ground to 500 km), we were able to study the coupling of the lower and upper atmosphere in this warming episode. Planetary wave 1 is the dominant wave component in this warming event. Analysis of the wave phase structure and the wave amplitude indicates that the wave may experience resonant amplification prior to the peak warming. The mean wind in the high- latitude winter stratopause and mesosphere decelerates and reverses to westward due to planetary wave forcing and forms a critical layer near the zero wind lines. The wind deceleration and reversal also change the filtering of gravity waves by allowing more eastward gravity waves to propagate into the mesosphere and lower thermosphere (MLT), which causes eastward forcing and reverses the westward jet in the MLT. This also changes the meridional circulation in the upper mesosphere from poleward/ downward to equatorward/ upward, causing a depletion of the peak atomic oxygen layer at 97 km and significant reduction of green line airglow emission at high latitudes and midlatitudes. Planetary waves forced in situ by filtered gravity waves in the MLT grow in the warming episode. Their growth and interaction with tides create diurnal and semidiurnal variabilities in the zonal mean zonal wind.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77945bg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2002-12-07T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2002 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:38:18.642108

Metadata language

eng; USA